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The bivariate probability density function (PDF) of these summary statistics cannot be obtained
analytically, but in the following we demonstrate that the characteristic function can be derived.
Let us first compute the characteristic function of this two-dimensional random variable, know-
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In the following we will work out each of the characteristic functions on the right hand side.

It is reasonable to assume that linkage disequilibrium (LD) fades off beyond 1Mb distance. Thus,
without loss of generality we can assume that non-zero LD does not extend beyond m0 markers
around the focal variant. Hence we can assume that the length of ρk is m0 and only consider
γx,γy and γu to be of length m0 instead of m. Let us first approximate the distribution of ρk
values following a spike and slab Gaussian mixture, i.e. proportion πk of the m0 SNPs have
non-zero LD, coming from a Gaussian distribution N (0, σ2

k) and the remaining (1−πk) fraction
of the LD values is zero. In mathematical notation

ρk = rk � κk with rk ∼ N (0, σ2
k · I) and κk ∼ Bm0(1, πk)
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The PDF of the product of two zero-mean Gaussians (rk and ζu) is a modified Bessel function
of the second kind of order zero (K0(ω)) [1], more precisely
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and its characteristic function [2, 3] is
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Next, the characteristic function of the product of (rk�ζu)j and a Bernoulli distributed (κk,u)j
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Hence the characteristic function of the sum of m0 independent random variables is the product
of them, we have
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Finally, we apply a first order Taylor series approximation (around 1) of the log of the charac-
teristic function in order to speed up computation and improve numerical accuracy
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Analogously, the approximation of the logarithm of the characteristic functions of z
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Since the characteristic function of a centred multivariate Gaussian with variance-covariance
matrix Σ is exp(−(1/2) · t′ · Σ · t) we have
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1.2 From characteristic function to probability density function

The final form of the logarithm of the joint characteristic function of the transformed summary
statistics is
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Using the inversion theorem for characteristic functions we can express the joint distribution of(
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This integral can be efficiently computed by Fast Fourier Transformation (FFT, see [4] and
references within). To speed up computation, we bin SNPs according to their πk and σk values
(10 × 10 bins with equidistant centres) and for SNPs in the same bin the PDF function is
evaluated over a fine grid (27 × 27 combinations) using the FFT.

Note that any derivative of the likelihood function can be readily calculated as a FFT of the
derivative of the characteristic function, i.e.

∂

∂θ
f(β̂x

k ,β̂
y
k)(x, y) =

(
1

2π

)2

·
∫ ∞
−∞

∫ ∞
−∞

exp(−i · (x · v + y · w)) · ∂
∂θ
ϕ(β̂x

k ,β̂
y
k)(v, w) dv dw (13)

1.3 Computation of the LD scores

We first took 4,773,627 SNPs with info (imputation certainty measure) ≥ 0.99 present in the
association summary files from the second round of GWAS by the Neale lab[5]. This set was
restricted to 4,650,107 common, high-quality SNPs, defined as being present in both UK10K
and UK Biobank, having MAF > 1% in both data sets, non-significant (Pdiff > 0.05) allele
frequency difference between UK Biobank and UK10K and residing outside the HLA region
(chr6:28.5-33.5Mb). For these SNPs, LD scores and regression weights were computed based on
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3,781 individuals from the UK10K study[6]. To estimate the local LD distribution for each SNP
(k), characterised by πk, σ

2
k, we fitted a two-component Gaussian mixture distribution to the

observed local correlations (focal SNP +/− 2’500 markers with MAF≥ 0.5% in the UK10K):
(1) one Gaussian component corresponding to zero correlations, reflecting only measurement
noise (whose variance is proportional to the inverse of the reference panel size) and (2) a sec-
ond component with zero mean and a larger variance than the first component (encompassing
measurement noise plus non-zero LD).

1.4 Likelihood function identifiability

The likelihood function is symmetric around U , but for simplicity we will consider the general
case where the variables of U and X are flipped, although the same can be said for the variables
of U and Y . The likelihood function is partially identifiable such that there exists for any given
model parameters, another model with different parameters but with the exact same likelihood
function.

Proof: given that the SNPs effects between trait X and the confounder U are flipped, the new
parameters follow the following structure:

h′x = tx + ty · αy→x (14)

h′y = hy (15)

α′y→x = αy→x (16)
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(18)

Plugging in α′x→y in the above equation, and simplifying ty
tx by w and ty′

tx′ by w′ to get the
confounding ratio:
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αx→y + αx→y · w′ · αy→x = α′x→y + w′

αx→y − α′x→y = w′ − αx→y · w′ · αy→x
αx→y − α′x→y = w′(1− αx→y · αy→x)

w′ =
αx→y − α′x→y

1− αx→y · αy→x
(19)
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inserting the complete form of α′x→y,
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In order to obtain t′y and t′x, we use the equations of h′x, α′x→y and by using the inverse trans-
formation of α′y→x = αy→x, αx→y as well as w′ as follows:
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(21)

hx = t′x + t′y · αy→x
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Replacing t′x in hx to get t′y:

t′y = hx · w (24)

Under these two models with equal likelihood, there are three slopes obtained from the ob-
served data: two are the correlation of effect sizes (αx→y and 1/αy→x), where one of them is
greater than, and the other is within the parameter bounds. The third is the correlation of the

confounder
αx→y+

qy
qx

1+
qy
qx
·αy→x

.

More often than not, only one slope is recovered within the boundaries of the parameters set
for LHC-MR. However, given the now known re-parameterisation, the second (and if found,
third) slope can be simply calculated if not found by the likelihood function minimisation. It
is reasonable to assume that the direct heritability of each trait is larger than the indirect
heritability, hence we report parameter sets where h2

x > t2x or h2
y > t2y.
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1.5 Decomposition of genetic correlation

Given the starting equations for X and Y we can calculate their genetic correlation. Denoting
the total (multivariate) genetic effect for X and Y as δx and δy, we can express them as
follows

δx = qx · γu + αy→xδy + γx (25)

δy = qy · γu + αx→yδx + γy (26)

Substituting the second equation to the first yields

δx = qx · γu + αy→x(qy · γu + αx→yδx + γy) + γx

= (qx + αy→xqy) · γu + (αy→xαx→y)δx + αy→xγy + γx (27)

= ((qx + αy→xqy) · γu + αy→xγy + γx) /(1− αy→xαx→y)

Similarly,
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Thus the genetic covariance is
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Therefore the genetic correlation takes the form
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These values can be compared to those obtained by LD score regression.
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Supplementary Figures
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U

Supplementary Figure 1: Basic assumptions of Mendelian randomisation. (1) Relevance – genetic data,

denoted by G, is robustly associated with the exposure. (2) Exchangeability – G is not associated with any confounder of

the exposure-outcome relationship. (3) Exclusion restriction – G is independent of the outcome conditional on the exposure

and all confounders of the exposure-outcome relationship (i.e. the only path between the instrument and the outcome is

via the exposure).
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Supplementary Figure 2: An illustration of a scatter plot showing simulated observed SNP effects on
traits X and Y , coloured by the strongest effect between the three vectors γx, γy , γu. SNPs in grey are those with
no effect on any of the traits. This illustration shows the distinct clusters that could arise in the presence of a confounder.
The dark blue cluster of SNPs represents those that are not in violation of any of the MR assumption, and hence its slope
reflects the true causal effect of X on Y , while the red cluster of SNPs are those associated with the confounder. The
steeper slope of the red cluster of SNPs causes a typical regression line - shown in grey - that represents the causal effect
(estimated using conventional MR methods) to be overestimated.
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Supplementary Figure 3: A schema showing the workflow of the simulation results. For a single set of
parameter settings, 50 different data generations of GWAS summary statistics are created for trait X and Y . The summary
statistics of a single data generation, as well as the sample size, SNP number and SNP-based LD structure are used in
the likelihood optimisation function that is run with 100 different random starting points in order to explore the likelihood
surface. A single maximum likelihood and its corresponding estimated parameters are selected to represent the estimates
of that data generation. And this is repeated for the other generations. The results for several data generation are often
represented in boxplots throughout the paper.
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Supplementary Figure 4: Simulation results under various scenarios. These modified Sina-boxplot represent
the distribution of parameter estimates from 50 different data generations under various conditions. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper
hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker
is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined
analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a
Estimation under standard settings (πx = 5 × 10−3, πy = 1 × 10−2, πu = 5 × 10−2, h2x = 0.25, h2y = 0.2, h2u = 0.3, tx =

0.16, ty = 0.11). b Addition of a reverse causal effect αy→x = −0.2. c Confounder with opposite causal effects on X and
Y (tx = 0.16, ty = −0.11). 11



Supplementary Figure 5: Simulation results showing varying sample sizes for the two exposure and
outcome samples. Modified Sina-boxplots representing the distribution of parameter estimates from 50 different data
generations. For each generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In
the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the
median, whereas the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third
quartile. The lower whisker is defined analogously. The true values of the parameters used in the data generations are
represented by the blue dots/lines. In this figure, samples sizes for the two traits differ as such nx = 500,000 and ny =
50,000 for a, and nx = 50,000 and ny = 500,000 for b.

12



Supplementary Figure 6: Simulation results under various scenarios. These modified Sina-boxplots represent
the distribution of parameter estimates from 50 different data generations under various conditions. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper
hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker
is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined
analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The
data simulated had no causal effect in either direction. b The data simulated had no confounder effect with πu, tx, and
ty = 0. c This model had a small causal effect of αx→y = 0.1.
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Supplementary Figure 7: Simulation results under various scenarios. These modified Sina-boxplots represent
the distribution of parameter estimates from 50 different data generations under various conditions. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper
hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker
is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined
analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The
data simulated had no causal effect in either direction. b The data simulated had no confounder effect with πu, tx, and
ty = 0. c This model had a small causal effect of αx→y = 0.1.

14



Supplementary Figure 8: Simulation results under various scenarios. These modified Sina-boxplots represent
the distribution of parameter estimates from 50 different data generations under various conditions. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper
hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker
is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined
analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines. a The
data simulated shows the increased effect of U on X and Y through tx = 0.41, ty = 0.27 instead of the standard setting
tx = 0.16, ty = 0.11. b This panel show the same thing but with a larger sample size of nx = ny = 500, 000
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Supplementary Figure 9: Simulation results where there is an increased polygenicity for all traits.
Modified Sina-boxplots representing the distribution of parameter estimates from 50 different data generations. For each
generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the
lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas
the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower
whisker is defined analogously. The true values of the parameters used in the data generations are represented by the blue
dots/lines. The proportion of effective SNPs that make up the spike-and-slab distributions of the γ vectors in this setting
is 10%, 15%, and20% for traits X,Y and U respectively. a Results for smaller sample size of nx = ny = 50, 000. b Results
for larger sample size of nx = ny = 500, 000.
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Supplementary Figure 10: Simulation results where the polygenicity of the confounder is reduced.
Modified Sina-boxplots representing the distribution of parameter estimates from 50 different data generations. For each
generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower
and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas the upper
whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is
defined analogously. The true values of the parameters used in the data generations are represented by the blue dots/lines.
In this figure, the polygenicity for U is decreased in the form of lower πu = 0.01. a Results for smaller sample size of
nx = ny = 50, 000. b Results for larger sample size of nx = ny = 500, 000.
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Supplementary Figure 11: Simulation results where there are two underlying confounders, once with
concordant and another with discordant effects on the exposure-outcome pair. Modified Sina-boxplots represent-
ing the distribution of parameter estimates from 50 different data generations. For each generation, standard MR methods
as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper hinges correspond to the
first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is the largest dataset estimate
smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values
of the parameters used in the data generations are represented by the blue dots/lines. a The underlying data generations
have two concordant heritable confounders U1 and U2 with positive effects on traits X and Y . b The data generations have

two discordant heritable confounders with t
(1)
x = 0.16, t

(1)
y = 0.11 shown as blue dots and t

(2)
x = 0.22, t

(2)
y = −0.16 shown

as red dots.
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Supplementary Figure 12: Simulation results where there are two underlying confounders, once with
concordant and another with discordant effects on the exposure-outcome pair. Modified Sina-boxplots represent-
ing the distribution of parameter estimates from 50 different data generations. For each generation, standard MR methods
as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the lower and upper hinges correspond to the
first and third quartiles, the middle bar corresponds to the median, whereas the upper whisker is the largest dataset estimate
smaller than 1.5∗inter-quartile range above the third quartile. The lower whisker is defined analogously. The true values
of the parameters used in the data generations are represented by the blue dots/lines. a The underlying data generations
have two concordant heritable confounders U1 and U2 with positive effects on traits X and Y . b The data generations have

two discordant heritable confounders with t
(1)
x = 0.16, t

(1)
y = 0.11 shown as blue dots and t

(2)
x = 0.22, t

(2)
y = −0.16 shown

as red dots.
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Supplementary Figure 13: Simulation results under various scenarios. These modified Sina-boxplots
represent the distribution of parameter estimates from 50 different data generations under various conditions. For each
generation, standard MR methods as well as our LHC-MR were used to estimate a causal effect. In the boxplots, the
lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds to the median, whereas
the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the third quartile. The lower
whisker is defined analogously. The true values of the parameters used in the data generations are represented by the blue
dots/lines. a The different coloured boxplots represent the underlying non-normal distribution used in the simulation of the
three γx, γx, γu vectors associated to their respective traits. The Pearson distributions had the same 0 mean and skewness,
however their kurtosis ranged between 2 and 10, including the kurtosis of 3, which corresponds to a normal distribution
assumed by our model. The standard MR results reported had IVs selected with a p-value threshold of 5×10−6. b Addition
of a third component for exposure X, while decreasing the strength of U . True parameter values are in colour, blue and
red for each component (πx1 = 1× 10−4, πx2 = 1× 10−2, h2x1 = 0.15, h2x2 = 0.1).
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Supplementary Figure 14: Running CAUSE on LHC-MR simulated data under the standard settings.
Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 50, 000), with 50 different data
generations under three different scenarios: presence of a shared factor only, presence of a causal effect only, presence of
both. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds
to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the
third quartile. The lower whisker is defined analogously. CAUSE returns two possible models with a respective p-value,
the sharing and the causal model, where the causal mode is the significant of the two. When only an underlying shared
factor was present in the simulated data, CAUSE had no significant causal estimates. With a true underlying causal effect,
or when both an underlying causal effect and a shared factor was present, the causal model was significant only 4% of the
simulations.
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Supplementary Figure 15: Running CAUSE on LHC-MR simulated data under the standard settings.
Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 500, 000), with 50 different data
generations under three different scenarios: presence of a shared factor only, presence of a causal effect only, presence of
both. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle bar corresponds
to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile range above the
third quartile. The lower whisker is defined analogously. CAUSE returns two possible models with a respective p-value,
the sharing and the causal model, where the causal mode is the significant of the two. When only an underlying shared
factor was present in the simulated data, CAUSE had no significant causal estimates. With a true underlying causal effect,
or when both an underlying causal effect and a shared factor was present, the causal model was significant 100% of the
simulations.
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Supplementary Figure 16: Running LHC-MR on CAUSE simulated data under various scenarios.
Modified Sina-boxplots representing the distribution of parameter estimates from LHC-MR of 50 different data generations
using the CAUSE framework. For each generation, standard MR methods, CAUSE as well as our LHC-MR were used to
estimate a causal effect. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle
bar corresponds to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile
range above the third quartile. The lower whisker is defined analogously. The true values of the parameters used in the
data generations are represented by the blue dots/lines. a CAUSE data was generated with no causal effect but with a
shared factor with an η value of ∼ 0.22. CAUSE chooses a sharing model 100% of the time with no estimate for a causal
effect. b CAUSE is simulated with causal effect but with no shared factor. c CAUSE is simulated with both a causal effect
and a shared factor.
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Supplementary Figure 17: Running LHC-MR on CAUSE simulated data under various scenarios.
Modified Sina-boxplots representing the distribution of parameter estimates from LHC-MR of 50 different data generations
using the CAUSE framework. For each generation, standard MR methods, CAUSE as well as our LHC-MR were used to
estimate a causal effect. In the boxplots, the lower and upper hinges correspond to the first and third quartiles, the middle
bar corresponds to the median, whereas the upper whisker is the largest dataset estimate smaller than 1.5∗inter-quartile
range above the third quartile. The lower whisker is defined analogously. The true values of the parameters used in the
data generations are represented by the blue dots/lines. a CAUSE data was generated with no causal effect but with a
shared factor with an η value of ∼ 0.22. b CAUSE is simulated with causal effect but with no shared factor. c CAUSE is
simulated with both a causal effect and a shared factor. LHC-MR seems to exhibit a bimodal effect at first glance, but the
two peaks are not connected.
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Supplementary Figure 19: A scatter plot of the causal effect estimates between LHC-MR and CAUSE.
To improve visibility, non-significant estimates by both methods are placed at the origin, while significant estimates by both
methods appear on the diagonal with 95% CI error bars for LHC-MR causal estimates, and 95% credible interval error bars
for CAUSE estimates. Labelled pairs are those with an estimate difference greater than 0.1.
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Supplementary Tables

UKBB ID / Data Origin Trait Name Abbreviation Sample Size PMID

845 Age completed full time education Edu 240,547 25826379
21001 irnt Body mass index (BMI) BMI 359,983 25826379

2443 Diabetes diagnosed by doctor DM 360,192 25826379
20002 1075 Non-cancer illness code, self-reported: heart attack/myocardial infarction MI 361,141 25826379
20002 1111 Non-cancer illness code, self-reported: asthma Asthma 361,141 25826379

2887 Number of cigarettes previously smoked daily PSmoke 84,456 25826379
20022 irnt Birth weight BWeight 205,475 25826379
50 irnt Standing height SHeight 360,388 25826379
4080 Systolic blood pressure, automated reading SBP 340,159 25826379

20003 1140861958 Treatment/medication code: simvastatin SVstat 361,141 25826379
30780 irnt LDL Cholesterol LDL 343,621 25826379
30760 irnt HDL Cholesterol HDL 315,133 25826379

UKBB + CARDIoGRAMplusC4D Coronary Artery Disease CAD 380,831 29212778

Supplementary Table 1: Details of the origin study of each trait, its abbreviation used in this paper,
the sample size of the study for that trait, as well as the PubMed article ID.
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Supplementary Table 2: Cross tables between LHC-MR and various standard MR methods comparing
the significance and sign of each respective causal estimate. f shows a cross table between the two-least correlated
MR methods in terms of their estimates.
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Pair αx→y p-value γ IVW αx→y p-value

BMI-Asthma 0.1290 4.99E-14 0.02 (0.01, 0.02) 0.0593 1.00E-08
BMI-DM 0.2958 1.07E-99 0.04 (0.03, 0.04) 0.2447 2.25E-140
BMI-SBP 0.1878 5.55E-09 0.13 (0.11, 0.14) 0.1547 1.11E-24
BMI-SVstat 0.1670 2.08E-91 0.03 (0.03, 0.03) 0.1570 4.26E-63
BMI-MI 0.1396 1.67E-41 0.01 (0.01, 0.01) 0.1027 9.16E-32
BWeight-SHeight 0.4748 9.60E-18 0.34 (0.29, 0.39) 0.2959 8.01E-10
SHeight-BWeight 0.1806 1.93E-53 0.24 (0.22, 0.25) 0.1803 7.21E-86
SBP-DM 0.1437 3.17E-07 0.02 (0.01, 0.02) 0.0697 3.69E-07
DM-SVstat 0.3147 4.11E-12 0.39 (0.33, 0.46) 0.2524 1.28E-16
SHeight-Edu 0.0715 8.42E-09 0.08 (0.07, 0.09) 0.0643 2.28E-21
SBP-SVstat 0.2089 4.84E-26 0.04 (0.04, 0.05) 0.1853 1.46E-52
Edu-HDL 0.4037 5.25E-12 0.22 (0.17, 0.27) 0.2848 4.06E-08
BMI-CAD 0.2373 2.37E-64 0.28 (0.25, 0.32) 0.1800 2.42E-53
CAD-DM 0.1920 5.92E-13 0.01 (0.01, 0.01) 0.0659 0.002455431
DM-CAD 0.4283 5.60E-19 1.95 (1.26, 2.64) 0.1796 4.15E-05
SBP-CAD 0.2807 2.86E-46 0.45 (0.39, 0.51) 0.2500 9.77E-24
CAD-SVstat 0.2491 8.82E-44 0.03 (0.03, 0.04) 0.3077 1.15E-25
CAD-MI 0.4634 0 0.02 (0.02, 0.02) 0.4191 3.07E-285
LDL-CAD 0.3402 1.17E-45 0.31 (0.24, 0.38) 0.2014 8.56E-27
BMI-Edu -0.2241 3.74E-14 -0.12 (-0.14, -0.11) -0.1892 6.15E-35
SHeight-BMI -0.1278 1.40E-22 -0.13 (-0.14, -0.11) -0.0854 9.01E-23
SBP-BWeight -0.2565 9.85E-08 -0.13 (-0.16, -0.1) -0.1646 1.20E-11
SBP-SHeight -0.3657 4.81E-08 -0.12 (-0.15, -0.1) -0.0967 0.004422636
SHeight-SBP -0.0759 5.74E-05 -0.08 (-0.09, -0.07) -0.0652 1.25E-15
SHeight-SVstat -0.0465 4.76E-09 -0.01 (-0.02, -0.01) -0.0328 6.78E-12
BMI-HDL -0.3760 3.54E-56 -0.28 (-0.29, -0.26) -0.3630 3.17E-111
SHeight-LDL -0.0716 4.26E-09 -0.04 (-0.05, -0.02) -0.0298 5.07E-06
BWeight-CAD -0.1745 2.05E-06 -0.21 (-0.28, -0.14) -0.0978 2.83E-05
SHeight-CAD -0.0802 3.72E-20 -0.15 (-0.18, -0.12) -0.0482 2.18E-12
HDL-CAD -0.1729 7.00E-31 -0.26 (-0.3, -0.21) -0.0778 5.45E-10

Supplementary Table 3: Table comparing the causal estimates of LHC-MR, CAUSE, and IVW for
trait pairs that had a significant causal effect in LHC-MR and CAUSE. The column showing the gamma (causal
effect) estimate of the CAUSE method also reports its 95% credible intervals. A complete table for all the studied pairs is
found in the Supplementary Data 4.
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